Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
RSC Adv ; 13(24): 16039-16046, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37260714

RESUMO

The synthesis of metal-organic frameworks (MOFs) and their processing into structures with tailored hierarchical porosity is essential for using MOFs in the adsorption-driven gas separation process. We report the synthesis of modified Cu-MOF nanocrystals for CO2 separation from CH4 and N2, prepared from DABCO (1,4-diazabicyclo[2.2.2] octane) and 9,10 anthracene dicarboxylic acid linkers with copper metal salt. The synthesis parameters were optimized to introduce mesoporosity in the microporous Cu-MOF crystals. The volumetric CO2 adsorption capacity of the new hierarchical Cu-MOF was 2.58 mmol g-1 at 293 K and 100 kPa with a low isosteric heat of adsorption of 28 kJ mol-1. The hierarchical Cu-MOF nanocrystals were structured into mechanically stable pellets with a diametral compression strength exceeding 1.2 MPa using polyvinyl alcohol (PVA) as a binder. The CO2 breakthrough curves were measured from a binary CO2-CH4 (45/55 vol%) gas mixture at 293 K and 400 kPa pressure on Cu-MOF pellets to demonstrate the role of hierarchical porosity in mass transfer kinetics during adsorption. The structured hierarchical Cu-MOF pellets showed stable cyclic CO2 adsorption capacity during 5 adsorption-desorption cycles with a CO2 uptake capacity of 3.1 mmol g-1 at 400 kPa and showed a high mass transfer coefficient of 1.8 m s-1 as compared to the benchmark zeolite NaX commercialized binderless granules, suggesting that the introduction of hierarchical porosity in Cu-MOF pellets can effectively reduce the time for CO2 separation cycles.

2.
Nanotechnology ; 33(43)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35835080

RESUMO

Ceramic materials with high surface area, large and open porosity are considered excellent supports for enzyme immobilization owing to their stability and reusability. The present study reports the electrospinning of aluminum silicate nanofiber supports from sol-gel precursors, the impact of different fabrication parameters on the microstructure of the nanofibers and their performance in enzyme immobilization. A change in nanofiber diameter and pore size of the aluminum silicate nanofibers was observed upon varying specific processing parameters, such as the sol-composition (precursor and polymer concentration), the electrospinning parameters and the subsequent heat treatment (calcination temperature). The enzyme, alcohol dehydrogenase (ADH), was immobilized on the aluminum silicate nanofibers by physical adsorption and covalent bonding. Activity retention of 17% and 42% was obtained after 12 d of storage and repeated reaction cycles for physically adsorbed and covalently bonded ADH, respectively. Overall, the immobilization of ADH on aluminum silicate nanofibers resulted in high enzyme loading and activity retention. However, as compared to covalent immobilization, a marked decrease in the enzyme activity during storage for physically adsorbed enzymes was observed, which was ascribed to leakage of the enzymes from the nanofibers. Such fibers can improve enzyme stability and promote a higher residual activity of the immobilized enzyme as compared to the free enzyme. The results shown in this study thus suggest that aluminum silicate nanofibers, with their high surface area, are promising support materials for the immobilization of enzymes.


Assuntos
Nanofibras , Álcool Desidrogenase/química , Alumínio , Silicatos de Alumínio , Enzimas Imobilizadas/química , Nanofibras/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA